This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

The Role of Desalination and Water Reuse Today and in the Next Decade

Presented by

Dave Argo, Senior Vice President Black & Veatch

Water Reuse and Desalination: The Decade Ahead, A New Era of Progress

The Next Decade

- Reuse continued evolution of the treatment processes
- Ocean Desalination focus on energy management

e technology

Water Factory 21

Water Reuse Has Been Practiced for Over 30 Years in California

- Water Factory 21
 - First planned indirect reuse project
 - Startup 1976
 - Operated thru 2004

OCWD has expanded and replaced Water Factory 21 with the Ground Water Replenishment System project (GWR)

The Past Has Set the Foundation for the Future

- 1980 2005 saw great advancements for water reuse and desalination
- The coming decade
 will show even greater
 advancements —
 double the impact
 in half the time

Advancements in Membrane Technology Provide Cost Savings for Reuse Projects

- Development of thin film composite (TFC) membranes
- Higher rejection of contaminants
- Lower operating pressures
- Hydrolysis control (extends life of membrane)

Membrane Treatment Effectiveness Is Increasing

- MF pretreatment produces "cleaner" RO feedwater and reduces cleaning frequency
- Development of TFC Polyamide (PA) Membranes
 - Wider range of flux designs at lower operating pressure

New 265 ML/d (70 mgd) GWR System – U.S. Model of the New Gold Standard for Indirect Potable Reuse

Microfiltration System

- 325 ML/d (86 mgd) US Filter CMF-S Microfiltration System
- Removes bacteria, protozoa, and suspended solids
- 0.2 micron pore size
- In-basin submersible system

Reverse Osmosis System

- 265 ML/d (70 mgd) reverse osmosis system
- Hydranautics ESPA-2
 Membranes
- Recovery rate: 85%
- Removes salts, viruses, organics and pharmaceuticals
- Pressure range: 10-14 bar (150–200 psi)

Ultraviolet/Advanced Oxidation System

- 265 ML/d (70 mgd) Trojan UVPhox System
- Low pressure high output lamp system
- Removes trace organics
- Uses hydrogen peroxide to form an advanced oxidation process

Seawater Intrusion Barrier

GWR Pipeline

- 22 km (14 mile) pipeline,1.5 m to 2.0 m in diameter(60 to 78 inches)
- Sized for ultimate flow
- Future mid-basin injection
- Located along west
 Santa Ana River levee

Indirect Potable Reuse Projects Provide a Cost-Effective New Water Supply

Advanced Water Treatment Plant \$305 M

Conveyance and Well Facilities \$182 M

Total Capital Cost \$ 487 M

Annual O&M Costs \$29.7 M

Total Unit Water Costs \$0.75/m³ (\$2.82/1,000 gal)

World's Largest Membrane-Based Water Reclamation Projects

LOCATION	PROJECT	CAPACITY
Kuwait	Sulaibiya	375 ML/d
Orange County, California	Ground Water Replenishment System (GWRS)	265 ML/d
Queensland, Australia	Western Corridor Recycled Water Project (WCRWP)	230 – 300 ML/d
Singapore	NeWater	200 ML/d
California	West Basin Projects	66 ML/d
Arizona	Scottsdale Water Campus	45 ML/d

What Will the Next Decade Bring for Indirect Potable Reuse?

 MBRs are highly applicable for reuse/recharge scenarios •BOD and TSS <1 mg/L
•Turbidity ≤ 0.1 NTU
•NH3-N < 1 mg/L
•TN < 10 mg/L (with anoxic)
•TP <0.1 mg/l (with chemical)
•Fecal coliforms < 100 col/100 ml

Secondary and Tertiary
Treatment

Salt / Organics Removal

? Public Acceptance ?

"If we could produce fresh water from salt water at a low cost, that would indeed be a great service to humanity and would dwarf any other scientific accomplishment."

JFK - 1962

The Decade Ahead: A New Era of Progress

Membranes have been around for many years

Membranes will play a critical role in ocean desalination

Significant growth in Ocean Desalination is forecasted and it will become global water supply practice.

In the Next Decade, Seawater Desalination Will Double

Source: Global Water Intelligence, 4/2004

Desalination Market Is Becoming a Global One

Desalination Market by 2015

% Seawater Desalination

- **■** Expected Installed Capacity Dec. 2015
- **■** Expected Installed Capacity Dec. 2010
- Installed Capacity Jan. 2006

Source: Global Water Intelligence, April 2004

Climate Change Is Getting Increased Attention

- U.N.'S Intergovernmental Panel on Climate Change (Fourth Report issued February 2007)
- The Effects of Climate Change on the Hydrology and Water Resources of the Colorado River Basin (University of Washington – Seattle)

Pressure on the Colorado River System Will Drive Need for Additional Water Supply Projects

Business as usual

	2010 – 2039	2040 - 2069	2070-2098
Reductions in Annual Runoff	14%	18%	17%
Storage Reductions	36%	32%	40%

Ocean desalination is being evaluated to offset this shortfall.

Advances in Membrane Technology Have Driven Improvements in Seawater RO

- Advantages
 - Lower costs
 - Ideal for small installations
 - Ease of scalability
 - Lower energy requirements
 - Smaller footprint
- However
 - Energy costs still high

SWRO= seawater reverse osmosisMED= mechanical effect distillationVC= vapor compression (distillation)MSF= multistage flash

Energy Component of SWRO Water Cost

- Energy contributes to approximately 30% of water cost
- Excluding amortization cost, energy accounts for more than 50% operating costs

Total Cost of Water

Energy Component of SWRO Water Cost

- Energy contributes to approximately 30% of water cost
- Excluding amortization cost, energy accounts for more than 50% operating costs

- Improved Permeability
- Hybrid Process Alternatives
- Renewable Energy Sources
- Energy Recovery System

Improved Permeability

Thirty years ago, an element with today's rejection and permeability would have cost 150 times more

Improved Permeability - RO Membrane Reduces Energy Cost

- Improved Permeability
- Hybrid Process Alternatives
- Renewable Energy Sources
- Energy Recovery System

Hybrid Process Alternatives - Effect on Energy Consumption

- Improved Permeability
- Hybrid Process Alternatives
- Renewable Energy Sources
- Energy Recovery System

Renewable Energy Sources – Perth, Australia

- Improved Permeability
- Hybrid Process Alternatives
- Renewable Energy Sources
- Energy Recovery System

Energy Recovery

- Positive displacement device
- Transfers energy from concentrate to feed directly
- Operating at ~95% efficiency at Tuas
- Largest DWEER installation

AwwaRF Project

Recently awarded a research project titled:

"Desalination Facility Design and Operation for Maximum Energy Efficiency"

- The project will:
 - Evaluate energy efficiency of current technologies
 - Evaluate potential energy efficiency improvements and technologies
 - Encourage alliances with global partners

B&V/GE – Global Technology Leaders Are Developing an Integrated Hybrid Water and Power Plant

MARKET NEED

 Significant seasonal/daily demand variations create power-water mismatch not fully solved in the today's power water market

OUR SOLUTION

BENEFIT

- Operating in base load improves efficiency of power and water production
- Lowers production cost of water by utilizing waste heat

LMS100[®] HWPP™ Plant Overview

Trends for the *Future* Future

- Nanotechnology
- Forward osmosis
- Renewable energy
- Biofouling Control

Nanotubes

Wave Energy

